

Daily Tutorial Sheet-6	Level-2

76.(A) In (b, c, d) carbon show + 4 oxidation state while in (A) carbon show - 4 oxidation state.

77.(A)
x
 c ${$

78.(B)
$$\overset{*}{\text{SO}}_2 = +4$$
 ; $\text{H}_2\overset{*}{\text{SO}}_4 = +6$; $\text{Na}_2\overset{*}{\text{S}}_2\text{O}_3 = +2$; $\text{Na}_2\overset{*}{\text{S}}_4\text{O}_6 = +\frac{5}{2}$.

79.(B) Oxidation number of C in

$$\mbox{HCHO} = 0 \quad ; \quad \mbox{CHCl}_3 = +2 \quad ; \quad \mbox{CH}_3 \mbox{OH} = -2 \qquad ; \quad \mbox{C}_{12} \mbox{H}_{22} \mbox{O}_{11} = 0$$

- **80.(D)** Fluorine always shows 1 oxidation state.
- **81.(B)** In all alkali and alkaline earth metal hydride hydrogen always shows 1 oxidation state.
- **82.(C)** Oxygen has 6 electrons in the outer most shell and shows common oxidation state -2.

83.(C)
$$H_2 + Br_2 \rightarrow 2H - Br_1$$
Reduction

- **84.(C)** Al_2O_3 cannot act as both oxidising and reducing agent.
- **85.(AB)** In H_2S sulphur shows -2 oxidation state and in SO_2 shows +4 oxidation state. Hence SO_2 shows both oxidising and reducing properties.